ATSC 3.0 Featured Prominently at 2018 NAB Conference

“The Road to ATSC 3.0: Powered by ATSC 3.0” Ribbon Cutting CeremonyDeployment of ATSC 3.0 is off and running, with a strong showing this month at this year’s NAB Conference in Las Vegas. More than 40 exhibitors and 22 technology-and-business sessions demonstrated the level of interest in the new Next Generation Broadcast TV standard, with a ribbon-cutting ceremony kicking off the activities.

ATSC President Mark Richer underscored the level of 3.0 presence at the show, saying “That’s how we know it’s real, and that’s how we know it’s happening,” and Sam Metheny, EVP/CTO at NAB, said that while ATSC is now “moving to the implementation phase,” it is a “living standard that will continue to evolve over time.” Mike Bergman, ‎Senior Director, Technology & Standards at the Consumer Technology Association, anticipates “broad deployment, and a breathtakingly immersive viewing experience,” which should complement the growing momentum of 4K TV sales.

Now that the ATSC 3.0 standard has been approved, broadcasters can develop two-way, IP-based connections with their viewers and deliver TV experiences on par with other digital media. Looking to the future, conference panelists addressed key Next Gen TV capabilities, including enhanced audience insights, addressable advertising, interactivity, and personalization, along with plans to generate incremental revenue and audience engagement.

Broadcasters are used to slow change, but now need to change faster, even on a monthly basis. The world is changing faster, and consumer demands are changing, with OTA viewership growing, and OTT services and usage growing. Mobile viewing continues to increase, a cord cutting / shaving / nevers are changing TV marketplace dynamics. On-demand viewing is an assumed feature, and digital advertising is increasingly powerful, so targeted advertising is now essential.

Chart courtesy of NAB Pilot Program

SFNs (single-frequency networks, a broadcast technology comparable to mobile cellular networks) will enable all of these new services, and data analytics will drive the opportunities. The WiFi/mobile broadband return channel defined by ATSC 3.0 means that even simple receivers need a back channel.

While MVPDs (Multichannel video programming distributors, i.e. cable and satellite) have long provided a revenue stream to broadcasters through retransmission-consent agreements, this could be one key area of the change in business model made possible by ATSC 3.0, which is not mandated by the FCC, other than at the transmission layer, and whose carriage is not currently subject to retrans obligations.

Broadcasters are interested in gathering viewership data from mobile devices and doing dynamic ad insertion. Reaching individuals will be attractive to advertisers, and broadcasters can now put movies into home boxes for Netflix, bypassing MVPDs. ATSC 3.0 is thus poised as a medium to test new business models, and broadcasters can partner with other spectrum owners and mobile carriers to supplement the “traditional” mobile spectrum.

The Phoenix Model Market project is the first collaborative single-market effort to plan for and implement a transition to next-generation over-the-air television broadcasting. Twelve stations in the Phoenix market are participating, with service testing expected to start Q2’18, and consumer service testing in Q4’18. In addition to business model testing, consumer testing will extend into 2019.

Among the consumer-facing business models to be tested are program guide & hybrid TV, personalization, and emergency alerts. On the broadcaster side, content protection, data & measurement, advanced advertising, and transition models will be evaluated.

— agc

Do I Really Need a 4K (or 8K!) TV?

The short answer is, no and yes. Some analysts will have you believe that “8K TV blows 4K away,” and that might suggest that you at least want a 4K TV.  The reality, as it comes to electronics and perception, is more complicated.

One might assume that higher resolution always makes a picture better, because the pixels get smaller and smaller, to the point where you don’t see them anymore.  But the human visual system — your eyes — has a finite capacity, and once you exceed this, any other “improvement” is wasted, because it just won’t be seen.

Here’s why (warning, geometry involved):

The term “20/20 vision” is defined as the ability to just distinguish features that subtend one-arc-minute of angle (one-sixtieth of a degree). In other words, objects at a certain distance can only be resolved as separate objects if the objects are a certain distance apart.

Using trigonometry, this works out to be about 1/32″ as the smallest separation a person with 20/20 vision can see at a distance of ten feet. We can use the same math to show that the “optimum” distance from which to observe an HD (1080-line) display (i.e., where a 20/20 observer can just resolve the pixels) is about 3 times the picture height.

On a 1080-line monitor with a 15” diagonal, this works out to an optimum viewing distance of just under two feet; with a 42” display, it’s about five-and-a-half feet. Sitting closer than this means the pixels will become visible; sitting further means that the resolution is “wasted.”  Keep in mind, also, that most people sit about 9 feet away from the TV, what is sometimes called the “Lechner distance,” after a well-known TV systems researcher.

Of course, these numbers (and others produced by various respectable organizations) are based on subjective evaluation of the human visual system, and different observers will show different results, especially when the target applications vary.  Nonetheless, the “three picture heights” rule has survived critical scrutiny for several decades, and we haven’t seen a significant deviation in practice.

At 4K, the optimum distance becomes 1.6 picture-heights: at the same 1080-display viewing distance of 5.5 feet, one needs an 84”-diagonal display (7 feet), which is already available. For these reasons, some broadcasters believe that 4K is not a practical viewing format, since displaying 4K images would require viewing at 2.5 picture-heights to match normal human visual acuity.

At 8K, the numbers become absurd for the typical viewer: 0.7 picture heights, or a 195″ diagonal (16 feet) at a 5.5-foot distance.  With a smaller display, or at a larger distance, the increased resolution is completely invisible to the viewer: that means wasted pixels (and money).  Because such a display is very large (and thus very expensive), the 105-degree viewing angle it would subtend at the above viewing distance approaches a truly immersive and lifelike experience for a viewer — but how many people would put such a beast in their home?

From a production perspective, 4K does make some sense, because an environment that captures all content in 4K, and then processes this content in a 1080p workflow for eventual distribution, will produce archived material at a very high intrinsic quality.  Of course, there’s a cost associated with that, too.

But there are two other reasons why one might be persuaded to upgrade their HDTV:  HDR (High Dynamic Range) and HFR (High Frame Rate).  Briefly, HDR increases the dynamic range of video from about 6 stops (64:1) to more than 200,000:1 or 17.6 stops, making the detail and contrast appear closer to that of reality.  HFR increases the frame rate from the currently-typical 24, 30 or 60 fps to 120 fps.  And these other features make a much more recognizable improvement in pictures — at almost any level of eyesight.  But that’s another story.

agc

FCC Circulates NPRM to Authorize “Next Generation” Broadcast Television

THE FCC has pre-released a Notice of Proposed Rulemaking (NPRM), supporting the authorization of television broadcasters to use the “Next Generation” broadcast television (Next Gen TV) transmission standard developed by the Advanced Television Systems Committee (“ATSC 3.0”). They support a voluntary, market-driven basis, while broadcasters continue to deliver current-generation digital television (DTV) broadcast service, using the ATSC A/53 standard.

ATSC 3.0 is being developed by broadcasters with the intent of merging the capabilities of over-the-air (OTA) broadcasting with the broadband viewing and information delivery methods of the Internet, using the same 6 MHz channels presently allocated for DTV.

A coalition of broadcast and consumer electronics industry representatives has petitioned the Commission to authorize the use of ATSC 3.0, saying this new standard has the potential to greatly improve broadcast signal reception, particularly on mobile devices and television receivers without outdoor antennas, and that it will enable broadcasters to offer enhanced and innovative new features to consumers, including Ultra High Definition (UHD) picture and immersive audio, more localized programming content, an advanced emergency alert system (EAS) capable of waking up sleeping devices to warn consumers of imminent emergencies, better accessibility options, and interactive services.

With this action, the FCC says its aim is “to facilitate private sector innovation and promote American leadership in the global broadcast industry.” This document has been circulated for tentative consideration by the Commission at its open meeting on February 23. FCC Chairman Ajit Pai has determined that, in the interest of promoting the public’s ability to understand the nature and scope of issues under consideration by the Commission, the public interest would be served by making this document publicly available before officially requesting public comment.

The Wrong Kind of Special Interest Group

Is Amateur Astronomy Headed Towards the Top 0.1%?

THE CURRENT ELECTION CYCLE – theatrics aside – brings up a point of great concern to many voters:  the top 1/10th of 1 percent in America owns almost as much wealth as the bottom 90 percent.  I can’t help but wonder if amateur astronomy is headed in this same, disturbing, direction.

For the first time in many years, I decided not to attend a well-known and highly-promoted astronomy expo on the East Coast, as it had become, I believe, prohibitively expensive. In the past 15 years, the entrance fee has soared from $10 to $25, a yearly increase of more than 6%.  To say “soared” is not an exaggeration: compare that increase with yearly inflation, which has largely been much less than 4% over the same period, and sometimes even negative.

Looked at another way, the door price at this event has increased 2.5 times, while consumer prices have only gone up 1.3 times over the same time span.  I am reminded of the case years ago of a 12-year-old boy’s complaint of a price increase made by a well-known model paint company, which actually spurred government intervention – but I digress.

Other hobbies, by comparison, seem to have more reasonable event pricing: the yearly ham radio convention is $20 (for advance sales), the largest RC aircraft model show is $15, the biggest model railroad show is $13, and the largest photography show is free to attend exhibits.  (There are similarly some very large professional conventions that have free admission, only charging for attending lectures.) And all of these other hobbies have entry-level products of good quality and low cost, to boot.

The bigger concern is that this kind of pricing, even with student discounts, makes the exposition inaccessible to many families seriously considering the activity.

When a year’s membership in a local astronomy club can cost considerably less, this level of event pricing is not in sync with the budgets of lower- and middle-income families, especially for a pursuit that should be aiming to increase public accessibility and participation.  Worse, for a highly-publicized event, there is the impression of an elitist hobby, especially given the many exhibitors that display equipment running into the tens of thousands of dollars.

Not surprisingly, a well-known astronomy magazine declined my request to publish this opinion piece, disagreeing with my position, and also citing a business relationship with the producer of the astro expo (who did not respond to my posting on their Facebook page).  At the same time, a former official of the expo completely agreed with my remarks, saying that the pricing was “totally out of control,” and motivated by financial gain.

My own love of astronomy began as a child, when my dad bought me a very low-cost (and somewhat wobbly) reflecting telescope made by the A. C. Gilbert Company.  While no one endorses the need for more low-end telescopes of mediocre quality – department stores continue to be rife with them – the call for affordable and suitable entry-level scopes like the original Edmund Astroscan seems to have all but vanished.

Expo promoters should consider alternate pricing schemes that will attract newcomers, such as different entrance pricing without the talks, discounts for advance admission, or other similar reductions.  Astronomy, equipment, and consumer-facing events must be made accessible to a broad range of the public, and never give the impression of exclusivity. It is an obligation that companies and event promoters owe to all of the public, not just the top few percent.

Aldo Cugnini is a video technology consultant and lifelong amateur astronomer. He writes for a number of professional trade publications and dabbles in RC helicopters and ham radio.

CARTOON © COPYRIGHT 2011 BILL SCHORR – USED WITH PERMISSION.